For Medical Professionals

Explain hyperbaric oxygen (HBO) as it applies to brain injury.

HBO is a therapeutic modality that reduces cerebral edema (acute or long-term swelling) and improves the functions of the brain’s (or any other organ’s) tissues (called neurons in the brain) that have been rendered inactive by ischemia/hypoxia (deficiency of oxygen) by giving 100% oxygen under pressure in a hyperbaric chamber. The improvement of brain function, specifically, is reflected by the improved electrical activity of the brain. In other words, hyperbaric oxygen (HBO) uses pure oxygen under pressure to speed and enhance the body’s natural ability to heal. While often used as a primary emergency treatment (for example, in an ambulance on the way to the hospital), it is more often used as a cost-effective adjunct of enhancement therapy for patients who suffer from various diseases or conditions (mitochondrial, Lyme, RSD, Lupus, fibromyalgia, and autism, to name a few) or injuries associated with hypoxia (lack of oxygen) on a cellular level. It is at this cellular level where all life processes take place.

How far advanced is HBO research in the United States?

HBO is still considered an alternative therapy in the US. It will remain in this alternative status until controlled, double-blind studies are conducted. In other countries, it is possible to do controlled studies with funding provided by the government. In the United States, most of the funding for neurological studies, for example, is regulated by the National Institute of Neurological Disorders and Strokes (NINDS), operated under the auspices of the US Department of Health and Human Services (part of the National Institutes of Health). The cost of controlled, double-blind studies in the US is approximately $250,000 each. In addition, studies on new procedures, medications, or protocols are usually funded in the US by pharmaceutical companies where profit must be the primary focus. Pressurized oxygen is not a “drug” that pharmaceutical companies find financially advantageous. Finally, most medical schools do not have courses on hyperbaric oxygen. This lack of training does not give the average physician a comprehensive understanding of hyperbarics or the knowledge needed to assist caregivers to make an informed decision about its use.

HBOT for cerebral palsy.

The National Institute of Health in the United Kingdom pays for treatments for children with cerebral palsy, but in the US the majority of insurance companies do not typically pay for treatments that have not been formally approved by either Medicare or the AMA. There are some progressive companies that have begun to cover HBOT for the brain-injured child, but as long as HBOT for cerebral palsy is considered alternative, costs will remain the responsibility of the caregiver. On the positive side, most major insurance companies will pay for the medical evaluation of the child, including the SPECT scans, both for diagnostic purposes to begin HBOT and subsequent scans to document improvement to brain function as well as concomitant therapies.

HBOT for children.

By including not only the rationale of HBOT, but also its history, pertinent research, and physiological effects of oxygen on the body, specifically on the brain, it is hoped that caregivers will feel more confident about making their own decisions about the value of hyperbaric oxygen therapy for their child. It is important for the caregiver to remember that like any other form of therapy, HBOT is not intended to be the exclusive treatment used in cases of children with, say, cerebral palsy or brain injuries. Rather, it is recommended that it be part of the overall plan to help the child obtain as much independence and normal body function as possible. It is further hoped that members of the healthcare team, including physical, occupational, and speech therapists, will view HBOT as an ally to the individual child’s plan of care. At HOPE, we believe that caregivers should have access to the information they need to talk objectively to their own physician and care-giving team about this treatment modality.

Does HBOT help every child?

Unfortunately, it does not. As with any medical intervention, there are some children who do not seem to improve significantly with hyperbaric oxygen. For the most part, however, there is an 80%-90% correlation between changes on the SPECT scan and noticeable improvement. Usually, this improvement can be determined before the child completes the initial 40 hours of HBOT, but not always. Occasionally, even when there is not much change on the SPECT scans as the first series of treatments are concluding, parents do notice significant improvements later on. When the only change in the child’s medical plan is hyperbaric oxygen, it is difficult to discount the value of HBOT. This is why each child must act as his or her own control.

How soon will results appear for the brain-inured child?

This is a frequently asked question but difficult to answer. We do not always see immediate improvements in children with cerebral palsy, but we do see rapid improvement in children with brain injuries. This is especially true if we treat the child soon after the brain damage occurs. In short, the sooner HBOT is started, the better the results. This often applies to the speed of improvements as well.; the sooner the HBOT is started after a brain injury of any type, the sooner improvements are observed. It appears that the longer the time that elapses before HBOT is started, the longer it takes to see improvement and, to some degree, less improvement is seen. Furthermore, Dr. K.K. Jain in his Textbook of Hyperbaric Medicine reports that “repetitive HBO appears to be trophic, stimulatory to brain repair, and may not be complete in some cases until 200-300 treatments.” Of course, each child is different, as is the extent of his or her brain damage and its specific location. All of these factors affect the extent and rapidity of improvement. Not all children see dramatic results. Sometimes the improvements are merely a decrease in the degree of spasticity, or the ability to hold a cup and drink with one hand rather than two hands. In other cases, the child is able to decrease or discontinue medication for seizures, or the frequency of seizures may diminish significantly. All of these improvements are important to the child and his or her caregiver but may be difficult for an outsider to distinguish or to document scientifically.

How many hours of HBOT are needed?

Because each person is unique, the number of HBOT sessions will vary. The actual number of hours needed will depend, in part, on age, health, speed of improvement, goal of treatments, caregivers’ time-frame, and financial means, etc. While each case is different, standard protocol is to give an initial series (40-80 hours in the case of cerebral palsy and brain injury client-patients) unless a different number is needed, depending on the reason for using HBOT. Each session will lsat approximately an hour, with the total session time starting from the moment that the chamber begins to be pressurized. Longer term conditionstake more time to correct. Some client-patients have had over 300 hours of HBOT with continuing improvement.

Describe the HBO medical community.

The community of doctors and nurses adopting HBOT on a day-to-day basis is growing rapidly. The growth in the medical community’s use of HBOT is due, largely, to organizations like the UHMS, the Society of Baromedical Nurses, and the incorporation, now, of hyperbaric chambers in most ambulance and first-responder vehicles, along with the growing evidence from studies and testimonies of caregivers and parents. The medical community owes a great deal to individuals who brought new ideas and procedures to the field of hyperbarics. These founders of modern hyperbaric medicine were willing to stand apart from their fellow physicians and scientists and declar their belief in air and oxygen therapy. To demonstrate their faith in HBOT, they used their ingenuity and intuition to design and construct chambers. They often suffered severe criticism from others and were ostracized by their fellow medical professionals. Clearly, without their belief in their own creative and innovative ideas, hyperbaric medicine might never have become available to so many of today’s illnesses and diseases.

What is a SPECT scan?

Single photon emission computed tomography (SPECT) scanning is a relatively new, advanced diagnostic nuclear medical imaging procedure that provides a “cross section” image of the body, similar to those generated by computerized tomography (CT), also known as computerized axial tomography (CAT). Its primary purpose is to determine blood flow in the various organs of the body. It is particularly beneficial in the study of the brain. Unlike MRI or CAT scans, whose purpose is to show the anatomy of the body, SPECT scans show actual body functions, including brain function. An infinitesimal amount of a short-lived radioactive tracer is injected into an individual’s bloodstream through the arm or any vein. It releases energy impulse, which are then identified by the sensitive detectors of the SPECT scanner. The radioisotope used for tracing brains has the ability to cross the blood-brain barrier, which allows the doctor to determine how blood is distributed through different parts of the brain and to visualize brain metabolism. The scans produced by the gamma camera give the doctor the means to distinguish between dead and living cells, to determine the effects of pre- and post-HBOT sessions, and to make a better diagnosis of the client-patient’s actual condition. SPECT is a non-confining, painless procedure and takes about 30-40 minutes. The initial scan of the brain gives a baseline report of its function. This is critical in making a correct diagnosis of the progress and value of hyperbaric oxygen. It is usually imperative that there be areas of the brain which show the ability to recover through the use of increased oxygen tension. I no idling brain cells (in the case of brain injury and cerebral palsy) are located, HBOT may not be helpful. There have been instances, however, when significant improvement has taken place in a patient in spite of the absence of visible recoverable neurons. Cases such as these may be evidence of the brain’s capacity for plasticity (the ability of one part of the brain to take over for another part), the basis for neuro-rehabilitation.