About HBOT

Understanding the role of oxygen in the human body is essential to a full comprehension of what frequently causes cerebral palsy and the many other off-label conditions that HBOT has shown to have a positive effect on; hyperbaric oxygenation can play an important role in decreasing, or even ameliorating, the effects of cerebral palsy and brain injuries, stroke, concussions, and arthritis. Until one understands the effect of oxygen on the body, especially the brain, it can be difficult to see the relationship between hyperbaric oxygen therapy and cerebral palsy, or to discern how increasing the oxygen pressure in blood flowing to the brain can be of benefit in decreasing the symptoms of CP and many other conditions.

When oxygen is appropriately available to the critical parts of the body (the brain, heart, and lungs), it can mean the difference between life and death, coma and mental alertness, paralysis and movement, illness and health. When a portion of the brain is deprived of the correct amount of oxygen, any or all of the above conditions, as well as other impairments, may take place.

Oxygen is carried throughout the body by red blood cells, which contain the binding factor hemoglobin. When oxygen is inhaled, the molecules dissolve in plasma and bind to the hemoglobin of red blood cells, which in turn carry oxygen to the body’s tissues – all tissues, not just brain tissues. Once oxygen has been transferred into the tissue, it is replaced with carbon dioxide (as waste product) that also binds to hemoglobin and is transported to the lungs where it is discharged. Thus, the delivery of oxygen under normal physiological circumstances requires appropriate circulation and is energy dependent at the cellular level.

Under conditions of hyperbaric oxygen, patients breathe 100% oxygen in a pressurized chamber; this oxygen is the same gas that the body uses naturally without being under pressure. Under pressure there is increased penetration into tissues of the body. Oxygen under pressure will dissolve into body tissue and fluids in a direct proportion to the pressure used (Henry’s gas law of physics). Oxygen is thereby dissolved in the plasma, cells, bone, urine, blood, muscles, etc., and most importantly, cerebral spinal fluid.

This explains the significance of the statement by Edward Teller, Ph.D.,* that “hyperbaric oxygen delivers free molecular oxygen at the tissue level for immediate metabolic use without any energy exchange, even when the circulation is impaired.”

In animal studies conducted by Dr. Ite Boerema, a Dutch physician, it was proven that hyperbaric oxygen can supply adequate amounts of oxygen to all organs of the body, even without blood. Under hyperbaric conditions, he replaced the blood circulating through pigs’ bodies with saline solution. There was enough oxygen dissolved in other fluids of the body that the animals survived without any interruption of vital functions. Hemoglobin, carried by the red blood cells, is essential for the normal transport of oxygen, but from the standpoint of being the essential delivery system, it may be bypassed, at least on a temporary basis, if there is sufficient oxygen in the body fluids.

Under normal circumstances, the required oxygen flows through the body to the various parts (heart, lungs, stomach (home to 100 trillion bacterial cells), brain, etc.) via the circulatory system. If there is any type of interruption of blood flow, it means that the amount of available oxygen, down to the capillaries and the tissues, may be seriously reduced. When the arterial flow is hindered, ischemia (loss of blood flow) and hypoxia (lack of oxygen) are the results.

Equally important, oxygen flowing through the blood brings about certain chemical reactions within the body that result in energy production. Energy is required for circulation, respiration, digestion, maintaining constant body temperature, and proper brain function. Only a minute amount of oxygen is required for normal intracellular chemical reactions to take place, and under normal circumstances, the rate of oxygen used is determined by the rate at which the respective cells expend energy. Energy production, aided by oxygen, is vitally important in the brain where the cells need adequate energy to generate the electrical activity that causes it to function properly.

Thus, oxygen is a critical element in the functioning of all parts of the body. If cells do not receive any oxygen, they die and may not be regenerated. On the other hand, if a cell is getting a small amount of oxygen, it can remain viable for a much longer period than previously thought. In the case of a child with cerebral palsy or traumatic brain injury, for example, we are primarily interested in the brain cells (neurons), the length of time they remain viable, and how they can be revitalized.

It is important to remember that the same facts regarding the need for oxygen to sustain life, and the time some cells may remain viable, are as true of neurons as any other cell in the body. The critical issue to remember when discussing cerebral palsy and other brain injuries is that if the mitochondria of certain cells do not receive enough oxygen to operate properly, but are receiving some oxygen, they may not die. In this hypoxia (under oxygenation of the tissues) occurs. It was scientifically proven in the mid-1980s that dormant brain cells can remain viable for many years. In the meantime, however, the diminished supply of oxygen causes multiple symptoms such as mental disturbances, shortness of breath, rapid pulse, fall in blood pressure, and, if there is a severe loss of oxygen, cyanosis (blueness of the skin and mucous membranes).

The knowledge that hyperbaric oxygen treatment has a value to the body is not altogether new. Increased air pressure has been used for over a hundred years by the diving community to alleviate diving-related illnesses. The first actual use of air under pressure to treat decompression illness was in 1848. Although those who used this pressurized air did not know it, the compressed air naturally boosted the oxygen content of the plasma.

Today, it is common practice to use oxygen, administered in a hyperbaric chamber for multiple sclerosis (MS), Lyme disease, reflex sympathetic dystrophy (RSD), and many other disabling neurological and auto-immune conditions.

To the majority in the medical profession, hyperbaric oxygen therapy is a relatively new therapy for young children and adults. HBOT is simply the delivery of 100% pure oxygen at greater than atmospheric pressure through the use of a hyperbaric chamber. [This is referred to as ATA (absolute atmospheres) in discussing hyperbaric oxygen therapy.] The pressure can be administered in ranges from 1.1 to 3 ATA using 100% oxygen. Even lower pressures may be needed if seizure activity is present. Under these circumstances, pressures of 1.1 to 1.25 ATA using 100 percent oxygen are appropriate. This frequently treats the seizure disorder and thereby helps to reduce or stop ancillary medications.

HBOT uses pure oxygen at increased ambient pressure to speed and enhance the body’s natural ability to heal. In cases of cerebral palsy and brain traumas, the brain tissue is revived and can assist the body in restoring those functions that have been lost or compromised. It is interesting to note that the recovery of the person’s motor and intellectual functions often continues long after the treatments have ended. The brain (and other) cells that have been dormant need to re-learn (or, perhaps, learn for the first time) the functions for which they are responsible.

Inasmuch as the brain consumes 20% of the oxygen in the body even though it makes up only 2% of the weight, it is easy to see why lack of oxygen in the brain cells has such a dramatic effect on the body. The brain also receives 15% of the cardiac output even though it does not perform any physical work. Lack of oxygen is devastating to the brain. In cases of cerebral palsy, concussion, and brain injury, the goal is to “jump-start” the dormant brain cells with HBOT by providing adequate oxygen to create a better internal environment and encourage optimal development. In some cases, damaged neurons can be recovered up to 12 to 14 years after an injury occurs. Thus, many types of brain insults, including pediatric stroke, coma, and even autism have been successfully affected through the use of HBOT.

Physicians in the US and abroad have increasing opportunities to experience first-hand the benefits of HBOT on MS, age-related macular degeneration, acquired (and other) immune deficiencies, Lyme disease, cerebral palsy, and brain injuries. Studies from around the world are currently yielding impressive results demonstrating that reactivating dormant brain cells with HBOT can have positive effects on many types of brain injuries.

Success of hyperbaric oxygen in any given case is dependent upon the location and extent of the irreparable damage and the location and extent of the potentially recoverable areas of the insult, overall physical condition, and/or severity of the patient’s injury. While not necessarily a cure, hyperbaric oxygen offers the best chance of recovery for patients suffering from a variety of medical conditions.

When administered properly by trained medical personnel, HBOT causes no pain or discomfort and is completely non-invasive. At the same time, we encourage caregivers and medical personnel to fully investigate our facility before using it or recommending our service.

* Dr. Teller developed the hydrogen bomb.

Share